YouTube, Public Discourse, and the ‘Makan Siang Gratis’ Program: An Analysis of Toxicity Comments on the Liputan6 Channel

Authors

  • Jayus Jayus Universitas Muhammadiyah Riau
  • Assyari Abdullah Universitas Islam Negeri Sultan Syarif Kasim Riau, Riau, Indonesia https://orcid.org/0000-0001-6356-9315
  • Mustafa Universitas Islam Negeri Sultan Syarif Kasim Riau, Riau, Indonesia
  • Sumaiyah Universitas Muhammadiyah Riau, Riau, Indonesia

Keywords:

Toxicity Comment Analysis, Makan Siang Gratis, YouTube, Public Discourse

Abstract

This study investigates the toxicity of comments on the ‘Makan Siang Gratis’ Program features on the Liputan6 YouTube Channel. Using the Toxicity Comment Analysis Method, the study aim to identify, measure, and understand the level of toxicity in user comments. Data were collected through the Communalytic platform, which facilitates automated data retrieval from the official YouTube API. This tool was used for comment scraping, which was then analyzed using the toxicity analysis feature to obtain toxicity scores based on indicators such as the severity of comments, hate speech, target identity, and threats contained within the comments. The findings show that while most comments had low toxicity scores, some comments exhibited higher levels of toxicity, particularly in the categories of severe toxicity and profanity. Comments with higher toxicity scores have the potential to disrupt constructive conversations and create polarization among user, diminishing the quality of interactions. Several toxicity, although rare, tends to trigger strong emotional responses, escalate conflicts, and lower the overall quality of discourse. Similarly, profanity and insults reduce the inclusivity of discussions, causing some users to refrain from participating. Identity attacks, though infrequent, can target individuals based on their characteristics and threaten the diversity of opinions in discussions. This study underscores the importance of moderation to manage toxic comments and maintain an online space that is respectful and inclusive.    

References

Gordanier, J., Ozturk, O., Williams, B., & Zhan, C. (2020). Free Lunch for All! The Effect of the Community Eligibility Provision on Academic Outcomes. Economics of Education Review, 77, 101999. https://doi.org/10.1016/j.econedurev.2020.101999

Gruzd, A., & Mai, P. (2025). Communalytic: A no-code computational social science research tool for studying online communities and public discourse on social media [Computer software]. https://Communalytic.org

Gupta, A., Nayyar, A., Arora, S., & Jain, R. (2021). Detection and Classification of Toxic Comments by Using LSTM and Bi-LSTM Approach. In A. K. Luhach, D. S. Jat, K. H. Bin Ghazali, X.-Z. Gao, & P. Lingras (Eds.), Advanced Informatics for Computing Research (Vol. 1393, pp. 100–112). Springer Singapore. https://doi.org/10.1007/978-981-16-3660-8_10

Indonesia.go.id. (2024). Three Free Nutritious Meal Programs You Should Know About. Information Portal of Indonesia. https://indonesia.go.id/kategori/editorial/8750/free-meals-program-expands-in-tangerang?lang=2

Izza, D. N. F. (2023). Peran Media Pers Dalam Pembentukan Opini Publik Dimasa Demokrasi Liberal Dan Terpimpin. Pubmedia Social Sciences and Humanities, 1(3), 1–8. https://doi.org/10.47134/pssh.v1i3.137

jawapes.or.id. (2025, April 25). MBG Menjadi Topik Polemik di Masyarakat. Media Jawapes Indonesia. https://www.jawapes.or.id/2025/01/mbg-menjadi-topik-polemik-di-masyarakat.html

Jayus, J., Sumaiyah, S., Mairita, D., & Abdullah, A. (2024). Media Sosial sebagai Media Kampanye Politik Menjelang Pemilu 2024. JURNAL SIMBOLIKA Research and Learning in Communication Study, 10(1), 72–81. https://doi.org/10.31289/simbolika.v10i1.11468

Jiang, L., Duishekeeva, A. T., Wang, R., Liu, T., & Hu, F. (2025). Analyzing the impact of social media on the formation of public opinion and trust in information in contemporary journalism in Kyrgyzstan. Review of Communication, 25(2), 63–77. https://doi.org/10.1080/15358593.2025.2463460

Karlodi, J. (2025). Menu MBG Dikritik, Kering dan Tanpa Rasa—Cepos Online. Menu MBG Dikritik, Kering dan Tanpa Rasa - Cepos Online. https://www.ceposonline.com/kota-jayapura/1995882830/menu-mbg-dikritik-kering-dan-tanpa-rasa

Krisnandi, D., Ambarwati, R. N., Asih, A. Y., Ardiansyah, A., & Pardede, H. F. (2023). Analisis Komentar Cyberbullying Terhadap Kata Yang Mengandung Toksisitas Dan Agresi Menggunakan Bag of Words dan TF-IDF Dengan Klasifikasi SVM. Jurnal Linguistik Komputasional (JLK), 6(2), 36–41. https://doi.org/10.26418/jlk.v6i2.85

Li, H., Mao, W., & Liu, H. (2022). Toxic Comment Detection and Classification. Stanford University. https://cs229.stanford.edu/proj2019spr/report/71.pdf

Liputan6 (Director). (2024, October 28). Eksklusif! Prabowo Bicara Soal Makan Gratis, Menteri Kabinet, Hingga Hasrat Jadi Presiden [Video recording]. https://www.youtube.com/watch?v=xOOHevgeNu8

Madani, M. (2020). Dimensi Interaksi Aktor Dalam Proses Perumusan Kebijakan Publik. https://doi.org/10.31219/osf.io/csxky

Mannayong, J., Muh. Rizal S, Herling, & Muhammad Faisal. (2024). Transformasi Digital Dan Partisipasi Masyarakat: Mewujudkan Keterlibatan Publik Yang Lebih Aktif. Jurnal Administrasi Publik, 20(1), 53–75. https://doi.org/10.52316/jap.v20i1.260

Murphy-Hill, E., Dicker, J., Carlson, D., Harbach, M., Murillo, A., & Zhou, T. (2024). Did Gerrit’s Respectful Code Review Reminders Reduce Comment Toxicity? In D. Damian, K. Blincoe, D. Ford, A. Serebrenik, & Z. Masood (Eds.), Equity, Diversity, and Inclusion in Software Engineering (pp. 309–321). Apress. https://doi.org/10.1007/978-1-4842-9651-6_18

Naseeba, B., Sai, P. H. R., Karthik, B. V. P., Chitteti, C., Sai, K., & Avanija, J. (2023). Toxic Comment Classification. In A. Abraham, T.-P. Hong, K. Kotecha, K. Ma, P. Manghirmalani Mishra, & N. Gandhi (Eds.), Hybrid Intelligent Systems (Vol. 647, pp. 872–880). Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-27409-1_80

Obadimu, A., Mead, E., Hussain, M. N., & Agarwal, N. (2019). Identifying Toxicity Within YouTube Video Comment. In R. Thomson, H. Bisgin, C. Dancy, & A. Hyder (Eds.), Social, Cultural, and Behavioral Modeling (Vol. 11549, pp. 214–223). Springer International Publishing. https://doi.org/10.1007/978-3-030-21741-9_22

Perspective API. (2025a). About the API - Attributes and Languages. https://developers.perspectiveapi.com/s/about-the-api-attributes-and-languages?language=en_US

Perspective API. (2025b). Learn about our research on customizable attributes for Perspective API [Computer software]. https://developers.perspectiveapi.com/s/about-the-api?language=en_US

PIDS, Vizmanos, J. F., Siar, S., Albert, J. R., Sarmiento, J. L., & Hernandez, A. (2023). Like, Comment, and Share: Analyzing Public Sentiments of Government Policies in Social Media. Philippine Institute for Development Studies. https://doi.org/10.62986/dp2023.33

Popescu, M. A. M., Barbu, A., Moiceanu, G., Costea-Marcu, I.-C., Militaru, G., & Simion, P. C. (2024). Citizens’ Perception of Digital Public Services: A Case Study among Romanian Citizens. Administrative Sciences, 14(10), 259. https://doi.org/10.3390/admsci14100259

Prasetyo, T. (2025). The Impact of Free Nutritional Meal Program on Students’ Physical Fitness And Mental Health: A Descriptive Study. Open Access, 9.

Rifqi, M., & Gusti, G. (2023). PARTISIPASI PUBLIK DI MEDIA SOSIAL (ANALISIS ISI PADA KOLOM KOMENTAR LAMAN FACEBOOK E100SS DALAM ISU TRANSPORTASI PUBLIK). The Commercium, 7(3), 25–33. https://doi.org/10.26740/tc.v7i3.56594

Rimbawan, R., Nurdiani, R., Rachman, P. H., Kawamata, Y., & Nozawa, Y. (2023). School Lunch Programs and Nutritional Education Improve Knowledge, Attitudes, and Practices and Reduce the Prevalence of Anemia: A Pre-Post Intervention Study in an Indonesian Islamic Boarding School. Nutrients, 15(4), 1055. https://doi.org/10.3390/nu15041055

Romadina, V. N., Juwita, O., & Pandunata, P. (2024). Analisis Komentar Toxic Terhadap Informasi COVID-19 pada YouTube Kementerian Kesehatan Menggunakan Metode Naïve Bayes Classifier. INFORMAL: Informatics Journal, 9(1), 92. https://doi.org/10.19184/isj.v9i1.48126

Ruffini, K. (2022). Universal Access to Free School Meals and Student Achievement: Evidence from the Community Eligibility Provision. Journal of Human Resources, 57(3), 776–820. https://doi.org/10.3368/jhr.57.3.0518-9509R3

Salsabila, M. I. (2024). STUDI PARTISIPASI DIGITAL DALAM KEBIJAKAN PUBLIK: TINJAUAN PUSTAKA SISTEMATIS (SLR). Jurnal Sosial Humaniora, 1(1), 38–54. https://doi.org/10.70214/54yc8n65

schoolmealscoalition.org. (2025). Press Release: Nutritious Meals Program to reach schools today in Indonesia | School Meals Coalition. A Healthy Meals for Every Child. https://schoolmealscoalition.org/stories/press-release-nutritious-meals-program-reach-schools-today-indonesia

Schwartz, A. E., & Rothbart, M. W. (2020). Let Them Eat Lunch: The Impact of Universal Free Meals on Student Performance. Journal of Policy Analysis and Management, 39(2), 376–410. https://doi.org/10.1002/pam.22175

setneg.go.id. (2025). Mendukung Terselenggaranya Program Makan Bergizi Gratis (MBG) di Papua | Sekretariat Negara. https://www.setneg.go.id/baca/index/mendukung_terselenggaranya_program_makan_bergizi_gratis_mbg_di_papua

Singgalen, Y. A. (2024). Sentiment and Toxicity Analysis of Tourism-Related Video through Vader, Textblob, and Perspective Model in Communalytic. Building of Informatics, Technology and Science (BITS), 6(1), 411–420. https://doi.org/10.47065/bits.v6i1.5416

stanford.edu. (2020). CS224N: Detecting and Classifying Toxic Comments. Stanford University. https://web.stanford.edu/class/archive/cs/cs224n/cs224n.1184/reports/6837517.pdf

Suhendra, S., & Selly Pratiwi, F. (2024). Peran Komunikasi Digital dalam Pembentukan Opini Publik: Studi Kasus Media Sosial. Iapa Proceedings Conference, 293. https://doi.org/10.30589/proceedings.2024.1059

Sumaiyah, S., Abdullah, A., Jayus, J., Yazid, Y., Astuti, D., Khairi, A., & Edison, E. (2024). Building Hope in Crisis: Global Public Service Broadcaster Innovation During the Covid-19 Pandemic. ARISTO, 13(1), 128–154. https://doi.org/10.24269/ars.v13i1.9004

tempo.co. (2024, March 1). 4 Tujuan Utama Program Makan Siang Gratis ala Prabowo | tempo.co. Tempo. https://www.tempo.co/ekonomi/4-tujuan-utama-program-makan-siang-gratis-ala-prabowo-81928

tempo.co. (2025a). Iklan MBG Pakai AI Menuai Kritik, Komdigi: Itu Bagian dari Kreativitas | tempo.co. Tempo. https://www.tempo.co/ekonomi/iklan-mbg-pakai-ai-menuai-kritik-komdigi-itu-bagian-dari-kreativitas-1208219

tempo.co. (2025b). Kepala BGN Dadan Hindayana Sebut Menu Makan Bergizi Gratis Dievaluasi Tiap Hari | tempo.co. Tempo. https://www.tempo.co/politik/kepala-bgn-dadan-hindayana-sebut-menu-makan-bergizi-gratis-dievaluasi-tiap-hari-1200665

tempo.co. (2025c, January 22). Pakar Gizi UGM Soroti Indikator Keberhasilan Program Makan Bergizi Gratis | tempo.co. Tempo. https://www.tempo.co/politik/pakar-gizi-ugm-soroti-indikator-keberhasilan-program-makan-bergizi-gratis-1197560

tempo.co. (2025d, February 11). Serba-serbi MBG: Dari Kemdiktisaintek Rancang Riset Pendukung hingga Saran KPAI Soal Evaluasi | tempo.co. Tempo. https://www.tempo.co/politik/serba-serbi-mbg-dari-kemdiktisaintek-rancang-riset-pendukung-hingga-saran-kpai-soal-evaluasi-1205815

van Aken, B., Risch, J., Krestel, R., & Löser, A. (2018). Challenges for Toxic Comment Classification: An In-Depth Error Analysis (Version 1). arXiv. https://doi.org/10.48550/ARXIV.1809.07572

Wardhana, F. W. (2025). Bola Panas Tunggakan Hampir Rp 1 Miliar di Dapur MBG Kalibata. Kompas.id. https://www.kompas.id/artikel/bola-panas-tunggakan-hampir-rp-1-miliar-di-dapur-mbg-kalibata

Wilantika, N., & Wibisono, S. B. (2021). Evaluating the Quality of Public Services Through Social Media. Asian Journal for Public Opinion Research, 9(3), 240–265. https://doi.org/10.15206/AJPOR.2021.9.3.240

Downloads

Published

2025-06-30