Narrative Fractures in Policy Communication: Framing and Public Sentiment on Indonesia’s Free Nutritious Meals Program
Keywords:
Public sentiment, policy communication, sentiment analysis, framing analysis, Indonesian digital media, government trustAbstract
The "Makan Bergizi Gratis" program, initiated by the Indonesian government and amplified by the media outlet Tempodotco, has triggered widespread public discourse. This study aims to examine how the program is framed in official media narratives and how it is received by the public. Using a multi-method textual analysis approach, the research combines keyword frequency analysis, non-negative matrix factorization (NMF) topic modeling, sentiment classification, and manual framing analysis. Two datasets were analyzed: structured video descriptions representing the official narrative, and 1,048 user comments capturing public sentiment. The results reveal a significant divergence between the two discourses. Official descriptions emphasize positive, policy-driven messages—highlighting nutritional benefits, administrative strategy, and global benchmarking. In contrast, public responses are dominated by negative sentiment, marked by skepticism, financial concerns, and political criticism. Common themes in the comments include distrust toward government implementation, humor and sarcasm (e.g., “omon-omon”), and comparisons to more established foreign programs. The sentiment analysis confirmed that over half of public comments carried negative emotional weight. These findings underscore the complexity of digital policy communication, especially in politically charged environments. The study contributes to communication research by illustrating how media framing and audience interpretation interact in digital spaces. It also highlights the necessity for more responsive and transparent public communication strategies in large-scale policy initiatives.
References
Agarwal, G., Dinkar, S. K., & Agarwal, A. (2024). Binarized spiking neural networks optimized with Nomadic People Optimization-based sentiment analysis for social product recommendation. Knowledge and Information Systems, 66(2), 933–958. Scopus. https://doi.org/10.1007/s10115-023-01956-w
Ahmad, T., Ahmed, S. U., & Ahmad, N. (2021). Detection of Depression Signals from Social Media Data. 191–209. https://doi.org/10.1007/978-3-030-76387-9_10
Ahmed, M. S., Aurpa, T. T., & Anwar, M. M. (2021). Detecting sentiment dynamics and clusters of Twitter users for trending topics in COVID-19 pandemic. PLoS ONE, 16(8 August). Scopus. https://doi.org/10.1371/journal.pone.0253300
Albanese, F., Feuerstein, E., Kessler, G., & de Zárate, J. M. O. (2023). Machine learning for cross-platform political communication research: Argentine government and opposition in Facebook, Instagram and Twitter. Cuadernos.Info, 55, 256–280. Scopus. https://doi.org/10.7764/cdi.55.52631
Almenar, E., Aran-Ramspott, S., Suau, J., & Masip, P. (2021). Gender differences in tackling fake news: Different degrees of concern, but same problems. Media and Communication, 9(1), 229–238. Scopus. https://doi.org/10.17645/MAC.V9I1.3523
Ariatmanto, D., & Rifa’i, A. (2024). The Impact of Feature Extraction in Random Forest Classifier for Fake News Detection. Jurnal RESTI (Rekayasa Sistem Dan Teknologi Informasi), 8(6), 730–736. https://doi.org/10.29207/resti.v8i6.6017
Ariyanti, M., Asyrafi, F., & Prasetio, A. (2023). How Do Brands Respond to System Ease, Customer Voice, and Content in the Marketplace? Transnational Marketing Journal, 11(2), 115–130. Scopus. https://doi.org/10.58262/tmj.v11i2.2007
Baracho, L. F., Roman, C., França, G. T., Favalle, F. B., Sacramento, C. D. do, & Fernandes, I. F. (2023). A Política Externa Brasileira a Partir Da Imprensa: Um Estudo Exploratório Sobre O Enquadramento Dos Principais Jornais Brasileiros. 31. https://doi.org/10.1590/1678-98732331e010
Barna, I., & Knap, Á. (2022). Analysis of the Thematic Structure and Discursive Framing in Articles About Trianon and the Holocaust in the Online Hungarian Press Using LDA Topic Modelling. 51(3), 603–621. https://doi.org/10.1017/nps.2021.67
Bautista, P. S., Alonso-López, N., & Giacomelli, F. (2021). Fact-checking in tiktok. Communication and narrative forms to combat misinformation. Revista Latina de Comunicacion Social, 2021(79), 87–113. Scopus. https://doi.org/10.4185/RLCS-2021-1522
Bol, N., Strycharz, J., Helberger, N., van de Velde, B., & de Vreese, C. H. (2020). Vulnerability in a tracked society: Combining tracking and survey data to understand who gets targeted with what content. New Media and Society, 22(11), 1996–2017. Scopus. https://doi.org/10.1177/1461444820924631
Bossetta, M., Dutceac Segesten, A., & Bonacci, D. (2023). Reconceptualizing Cross-Cutting Political Expression on Social Media: A Case Study of Facebook Comments During the 2016 Brexit Referendum. Political Communication, 40(6), 719–741. Scopus. https://doi.org/10.1080/10584609.2023.2222370
Boumber, D., Verma, R., & Qachfar, F. (2024). Blue Sky: Multilingual, Multimodal Domain Independent Deception Detection. In Society for Industrial and Applied Mathematics eBooks (pp. 396–399). Society for Industrial and Applied Mathematics. https://doi.org/10.1137/1.9781611978032.46
Bozzola, E., Spina, G., Tozzi, A. E., & Villani, A. (2020). Global measles epidemic risk: Current perspectives on the growing need for implementing digital communication strategies. Risk Management and Healthcare Policy, 13, 2819–2826. Scopus. https://doi.org/10.2147/RMHP.S201279
Chen, W., Chua, S. L. B., Winkler, S., & Ng, S.-K. (2022). Trusted Media Challenge Dataset and User Study. Int Conf Inf Knowledge Manage, 3873–3877. Scopus. https://doi.org/10.1145/3511808.3557715
Eccles, D. A., Kurnia, S., Dingler, T., & Geard, N. (2021). Three Preventative Interventions to Address the Fake News Phenomenon on Social Media. ACIS - Australas. Conf. Inf. Syst., Proc. ACIS 2021 - Australasian Conference on Information Systems, Proceedings. Scopus. https://www.scopus.com/inward/record.uri?eid=2-s2.0-85174593699&partnerID=40&md5=8006f4ca6aa1c26637a579257249997e
Gao, Y., Liu, Y., Luo, Y., Biggs, D., Zhao, W., & Clark, S. G. (2023). Tracking Chinese Newspaper Coverage of Elephant Ivory Through Topic Modeling. Conservation Biology, 37(5). https://doi.org/10.1111/cobi.14072
Guo, Z. (2024). Accurate prediction of purchasing behaviour of cross border e-commerce consumers under social media marketing. International Journal of Web Based Communities, 20(3–4), 340–354. Scopus. https://doi.org/10.1504/IJWBC.2024.142475
Hargitai, H. (2020). Content and Framing in Radio News Bulletins in Urban and Rural Hungary. 36(2), 125–147. https://doi.org/10.1177/0267323120966839
Hartono, B. D., Yusuf, B. P., & Arifiati, A. (2020). Implementation of digital marketing strategies through social media marketing, supply chain management and online sales of bill chilly product. International Journal of Supply Chain Management, 9(4), 348–354. Scopus.
Indrawati, N., & Putri, N. W. N. S. T. (2021). User Generated Content on Twitter to Identify Market Insights: A Case Study on Zenius. 1–6. https://doi.org/10.1109/icadeis52521.2021.9701934
Kamal, A., Jamal, Z., Rosales, G., Robinson, B., Sotny, Z., & Rathore, H. (2023). Image to Text Recognition for Detecting Human and Machine Altered News in Social Media. In Quwaider M. & Jararweh Y. (Eds.), Int. Conf. Internet Things: Syst., Manag. Secur., IOTSMS (pp. 72–74). Institute of Electrical and Electronics Engineers Inc.; Scopus. https://doi.org/10.1109/IOTSMS59855.2023.10325722
Lestari, M., & Ibrahim, R. (2025). Legal Aspects of Using Deepfake in Political Campaigns: A Threat to Democracy? International Journal of Humanities Law and Politics, 3(1), 30–35. https://doi.org/10.46336/ijhlp.v3i1.193
Mannan, E. F., Nurpratama, M. R., Shuhidan, S. M., & Masrek, M. N. (2023). The Relationship Between Digital Literacy and Heutagogy Learning: A pilot Study Among College Students in Indonesia. Library Management, 44(3/4), 246–260. https://doi.org/10.1108/lm-06-2022-0062
McEwan, B., Carpenter, C. J., & Hopke, J. E. (2018). Mediated Skewed Diffusion of Issues Information: A Theory. Social Media and Society, 4(3). Scopus. https://doi.org/10.1177/2056305118800319
Mongelli, L., Maiano, L., & Amerini, I. (2024). CMDD: A novel multimodal two-stream CNN deepfakes detector. In Petrocchi M., I. di I. e T. (IIT-C. Consiglio Nazionale delle Ricerche Via G. Moruzzi, 1, Pisa, Petrocchi M., P. S. F. IMT School for Advanced Studies 19, Lucca, Viviani M., & D. di I. Universita degli Studi di Milano-Bicocca (DISCo - IKR3 Lab) Sistemistica e Comunicazione Edificio U14 (ABACUS), Viale Sarca, 336, Milan (Eds.), CEUR Workshop Proc. (Vol. 3677, pp. 17–30). CEUR-WS; Scopus. https://www.scopus.com/inward/record.uri?eid=2-s2.0-85193214716&partnerID=40&md5=20bef55dd103027ee54b7076c64063b8
Nugroho, B., Yoganingrum, A., Febriandirza, A., & Prasetyadi, A. (2021). Predicting New Covid-19 Outbreak Clusters Among the “Science Denial” Communities. 126–130. https://doi.org/10.1145/3489088.3489117
Oliveira Moreira, T. D., Passos, C. A., Matias da Silva, F. R., Souza Freire, P. M., Fernandes de Souza, I., Bosaipo Sales da Silva, C. R., & Goldschmidt, R. R. (2024). JEDi—A digital educational game to support student training in identifying portuguese-written fake news: Case studies in high school, undergraduate and graduate scenarios. Education and Information Technologies, 29(10), 11815–11845. Scopus. https://doi.org/10.1007/s10639-023-12309-z
Pradana, R., Joddy, S., & Girsang, A. (2023). Easy Data Augmentation for Handling Imbalanced Data in Fake News Detection. 1–5. https://doi.org/10.1109/icteca60133.2023.10490822
Priya, R., Selvakumari, R., Begum, F., Sandhya, L., Thandauthapani, A., Mathew, F., & Harish, M. (2024). Impacts and Drivers: The Dual Role of Social Media on Consumer Behavior in South India’s Expanding E-commerce Market. Pakistan Journal of Life and Social Sciences, 22(2), 5791–5813. Scopus. https://doi.org/10.57239/PJLSS-2024-22.2.00431
Rahman, A., Rahman, F., Labib, T., Uschash, E. I., Chowdhury Adiba, S. J., & Karim, D. Z. (2023). Detection of DeepFake Videos Using Computer Vision and Deep Learning. Proc. IEEE Asia-Pacific Conf. Comput. Sci. Data Eng., CSDE. Proceedings of the 2023 IEEE Asia-Pacific Conference on Computer Science and Data Engineering, CSDE 2023. Scopus. https://doi.org/10.1109/CSDE59766.2023.10487745
Singh, A., Bharne, R., Kadu, R., Dasarwar, P. B., & Buddhawar, G. (2024). Impact of Deep Learning Techniques on Deep Fake Image Identification for Digital Investigation. IEEE Int. Conf. Model., Simul. Intell. Comput., MoSICom - Proc., 325–329. Scopus. https://doi.org/10.1109/MoSICom63082.2024.10881036
Soni, S., Trehan, D., Chotia, V., & Srivastava, M. (2024). Mamaearth: A digital first brand venturing offline. Emerald Emerging Markets Case Studies, 14(2), 1–38. Scopus. https://doi.org/10.1108/EEMCS-08-2023-0304
Sun, C., AlBadawy, E., Davison, T. F., Robinson, S. R., Chang, M.-C., & Lyu, S. (2024). Using Vocoder Artifacts for Audio Deepfakes Detection. In Advances in Information Security (Vol. 104, pp. 263–282). Springer; Scopus. https://doi.org/10.1007/978-3-031-49803-9_11
UNICEF. (n.d.). FORMATIVE EVALUATION OF THE NATIONAL STRATEGY TO ACCELERATE STUNTING PREVENTION. Kementrian PPN/Bappenas.
Utami, N. T., Hastuti, H., & Putra, Muh. R. A. (2024). Analisis Semiotika Pola Komunikasi Keluarga pada Film “Noktah Merah Perkawinan”. JOPPAS: Journal of Public Policy and Administration Silampari, 5(2), 135–144. https://doi.org/10.31539/joppas.v5i2.8446
Wang, Z., Yang, L., Ren, X., & Pham, D. P. T. (2023). Facilitate or Inhibit: Corporate Environmental Performance and Financing Costs. 47(4), 727–759. https://doi.org/10.1177/0193841x231175579
Widick, R. (2014). Dangerous places: social media at the convergence of peoples, labor, and environmental movements. In Cyberactivism on the Participatory Web (pp. 62–85). Taylor and Francis; Scopus. https://doi.org/10.4324/9781315885797-9
Xu, N. (2021). Digital media and investigative journalism in China. Media Asia, 48(3), 158–174. Scopus. https://doi.org/10.1080/01296612.2021.1920119
Yuanyuan, J., Zhihui, L., & Zhifeng, S. (2020). A study on the mechanism of new product diffusion under online social network context: Based on the process of peer influence. Journal of Industrial Engineering and Engineering Management, 34(5), 105–113. Scopus. https://doi.org/10.13587/j.cnki.jieem.2020.05.011
Zarei, K., Farahbakhsh, R., Crespi, N., & Tyson, G. (2021). Dataset of Coronavirus Content from Instagram with an Exploratory Analysis. 9, 157192–157202. https://doi.org/10.1109/access.2021.3126552
Zhang, B., Holton, A. E., & Zúñiga, H. G. d. (2024). Finding “Fake” in the News: The relationship Between Social Media Use, Political Knowledge, Epistemic Political Efficacy and Fake News Literacy. Online Information Review, 48(7), 1470–1487. https://doi.org/10.1108/oir-03-2024-0140
Zhou, Z., Guan, H., Bhat, M. M., & Hsu, J. (2019). Fake news detection via NLP is vulnerable to adversarial attacks. In Rocha A., Steels L., & van den Herik J. (Eds.), ICAART - Proc. Int. Conf. Agents Artif. Intell. (Vol. 2, pp. 794–800). SciTePress; Scopus. https://doi.org/10.5220/0007566307940800
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Jogjakarta Communication Conference (JCC)

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.